Cereal Aphid & BYDV Control

Dr Louise McNamara, Oak Park, Teagasc CELUP

Ms. Lael Walsh & Dr Michael Gaffney, Ashtown, Teagasc CELUP

Contact: Louise.McNamara@Teagasc.ie Lael.Walsh@Teagasc.ie

Outline

Kdr resistance

Control Options

Looking forward

Barley Yellow Dwarf Virus (BYDV)

Aphids:

- Grain Aphid (Sitobion avenae)
- Rose-grain aphid (*Metopolophium dirhodum*)
- Bird-cherry aphid (*Rhopalosiphum padi*)

Mild strain

Barley Yellow Dwarf Virus (BYDV)

Aphids:

- Grain Aphid
 (Sitobion avenae)
- Rose-grain aphid (*Metopolophium dirhodum*)
- Bird-cherry aphid (*Rhopalosiphum padi*)

Grain Aphid & BYDV

- Sitobion avenae (Grain Aphid)
- Reduces grain yield & quality
- Transmits BYDV
- *Kdr* confers partial pyrethroid resistance

Yield loss due to BYDV			
Crop	Yield Reduction		
Winter barley (early Sept)	3.7 t/ha		
Spring barley (Late April)	1.99 t/ha		
Winter wheat	1.2 t/ha		

Kennedy, 2014

'Knock Down Resistance' or 'kdr' was first identified in the UK in 2012 and in Ireland 2013

- Aphids with '*kdr*' gene are less susceptible to pyrethroids
- To date, 'kdr' has only been identified in Sitobion avenae (Grain Aphid), an important vector of Barley Yellow Dwarfing Virus (BYDV)
- In UK & Ireland a single clone (SA3) is most often associated with the kdr mutation that confers partial pyrethroid resistance
- Research indicates aphids carrying the resistance gene occur in all major grain growing regions

Field Collection sites

Field collections have been focused in major barley growing counties based on Teagasc acreage data

kdr widely present in *S. avenae* populations across arable counties in Ireland *kdr* occurs in aphid populations on both barley crops and adjacent grass hosts

BYDV Infection and sowing date

General representation

Kennedy, 2014

Aphid No/m² in barley sown on three dates Sampled 30 November

Kennedy, 2014

Autumn BYDV Control

Crop	BYDV Risk	Control Action
Early sown (Sept) cereals	High	Seed treatment & pyrethroid in Nov <u>Or</u> Spray at 2/3 leaf stage & 1 st week Nov
Oct sown	Medium to high	Seed Treatment <u>Or</u> Pyrethroid spray 1st week Nov
Emerging after Nov	Low	Control needed in mild winters where aphids are plentiful or in risk areas

Monitor for control failure – do not reapply the same treatment. Late spraying of previously unsprayed crops – beneficial when virus is widespread

BYDV Control – 2017 Cork Trial

Untreated Pvrethroid Seed Treatment

Winter Barley, Cassia, Sown 12th October, Cork

Insecticide trial Cork 2017

Redigo deter Seed Treatment	Pyrethroid foliar application	% BYDV	Yield	No. live aphids/m2 @GS31
No	No	39	4.6	30.9
No	Nov (2/3 leaf stage)	11.4	6.1	7.7
No	Jan	4.5	7	3.9
Yes	No	3	7	4.4
Yes	Nov (6 weeks from planting)	2.6	7	3.3
Yes	Jan	2	7	1.65

One year data only kdr Grain Aphids identified in plots

BYDV Control – 2017 Carlow Trial

Winter Barley, Cassia, Sown 3rd October, Carlow

Insecticide trial Carlow 2017

Redigo deter Seed Treatment	Pyrethroid foliar application	% BYDV	Yield	No. live aphids/m2 @GS31
No	No	3.7	7.2	12.7
No	Nov (2/3 leaf stage)	2.3	8.8	0
No	Jan	2.6	8.6	1.65
Yes	No	2	8.8	0
Yes	Nov (6 weeks from planting)	1.9	9	0
Yes	Jan	0.9	9.2	0

One year data only kdr Grain Aphids identified in plots

Spring Barley BYDV Control

Mean of 8 seasons Kennedy, 2014

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Spring BYDV Control

Crop	BYDV Risk*	Control Action
	*Based on 8 years Teagasc trials	
March sown spring cereals	V. low	Aphicide spray may not be neccesary
April sown spring cereals	Medium to high	Single pyrethroid spray at G.S.14
		Seed treatments <u>not</u> permitted in spring

Looking Forward

Risk Factors

- Early sown autumn crops / late sown spring crops
- Mild winters (Aphids overwintering)
- Mild Autumns (Aphid migration period lengthened)

Challenges

- No Redigo deter?
- Further resistance development
- Climate change

Future Avenues

- Importance of cultural control
- Alternative insecticides?
- Variety selection
- Biocontrol: Encouraging natural enemies
- Improved monitoring

Establishment & management of Ecological Focus Areas to enhance IPM

- Evaluate impact of EFAs within arable systems on
 - beneficial invertebrates & parasitoids
 - yield & crop health
- Test current GLAS arable margin treatments & potential variations
- Looking for planted arable margins to monitor for aphids and natural enemies
- Contact: Louise.McNamara@Teagasc.ie, Robyn.Earl@Teagasc.ie

Acknowledgments

Kdr work is conducted as part of the 'EPIC' project, funded under Stimulus (project 14/S/879), in collaboration of Dr Gordon Purvis at UCD and Drs Steve Foster and Dr Martin Williamson at Rothamsted Research.

Acknowledgments

Teagasc Oak Park

Kieran Crombie Liz Glynn Jim Grace Deirdre Doyle Fiona Hutton

UCD Dr Gordon Purvis

Rothamsted Research Dr Steve Foster Dr Martin Williamson

