Physiological requirements for high grain yields

Dr. Patrick Forrestal

Presentation outline

- My background.
- Yield: the trends and what makes it up.
- Solar radiation, temperature and green leaf area.
- Building a high yielding crop: the key phases.
- Why were yields generally high in 2011?
- Lessons from 2011/ Conclusion.
- Questions, comments, share your observations.

My background

 Grew up on mixed farm in the "sunny southeast".

- UCD:
 - B.Agr.Sc. Animal and Crop Production 2003
 - M.Agr.Sc. Crop Science 2005
- University of Maryland, U.S.A.
 - Crop Research Technician
 - Ph.D Plant Science 2011

Developed autumn N recommendations for wheat based on quick soil nitrate test

Chesapeake Bay watershed

Winter cover cropping

Maize management and N stabilizers

Source: P.J. Forrestal

Source: P.J. Forrestal

World wheat yield record holder?

Winter Wheat Yield Trends

1980s: increase of 2.1 % per annum 1990s: increase < 1.0 % per annum

Yield potential and Ireland

Yield achievable if:

- water, nutrients are adequate
- Diseases and weeds are controlled.

- It is yield limited by solar radiation, temperature.
- We receive enough solar radiation to produce 19.8
 t/ha winter wheat (dry) (Burke *et al.*, 2011)

Winter Wheat Variety Trials Mean Yield (T/Ha) Oak Park

Source: Prof J.I. Burke UCD

What makes up yield ?

The 3 yield components:

- 1. Heads/m²
- 2. Kernels/head
- 3. Kernel weight

Environmental and management factors influence each component at particular times.

Example: 2 different 10t/ha crops

Yield Component	Crop 1	Crop 2
Heads/m ²	600	500
Kernels/ear	36	40
Kernel weight (mg)	46.3	50

Chris Dennison (New Zealand) Former wheat yield world record holder. Broke 15 t/ha (dry) in 2003

We're trying to <u>harvest the sun</u> to produce carbohydrates and protein. Think about how to manage the crop to harvest sunshine most efficiently.

"Harvest the sun" and plant physiology

PHOTOSYNTHESIS

Chlorophyll pigments absorb **solar radiation.**

Used to drive biochemical processes producing

Carbohydrate (the assimilate which fills grain)

Solar Radiation?

Plants use a specific fraction of solar radiation:

Photosynthetically active light (PAR)

Why is the wheat canopy green?

Chlorophyll pigments absorb red and blue light most strongly.

Green light is reflected.

Solar radiation drives photosynthesis rate

Capturing PAR for photosynthesis Green leaf area is key

Temperature drives development rate

Growing degree units (GDU)

Calculated as:

(Daily Max Temp + Daily Min Temp) _ (0°C)

E.g. $10^{\circ}C + 4^{\circ}C$ (0°C) = 7 GDUs

Each tiller takes 62 GGUs = 9 days at above temp.

Lower average temperatures

=> longer the growth phases.

=> Including grain fill.

An unusual application of GDUs

Source: P.J. Forrestal

The Urban Wheat Field Experience

Wheat Food

Source: P.J. Forrestal

Building high yields through key development phases

- Foundation period:
 - sets shoot numbers (heads/m²)
- Construction period:

 sets final crop structure
 (heads/m² and kernels/head)
- Production period:
 - (kernel weight)
- Roughly:
 - winter, spring and summer for winter crops

1. The Foundation period

The upper number of heads/m² is set

- Viable seeds planted and emergence.
- tillers/plant.

What favors tiller production?

- Moist, warm weather.
- Early sowing.
- Good soil fertility, particularly N

When?

- Prior to the stem elongation.

Roots the foundation for nutrient and water uptake

- Some nutrients are more difficult to recover.
- P is less mobile.
- 150,000 km roots/ha by GS 31

> 3 time around earth

Response to light during the foundation period

(Evers et al. 2006) examined wheat

grown at:

- 25 and 100% light.
- 3 population densities.
- Tillering stopped when:
- a) PAR interception exceeded40-45% of total available.
- a) Ratio of red to far-red light drops below **0·35–0·40**.
- Early warning signal for future competition.
- Plant detects shading by its neighbours.

Dense canopies - microenvironent

Septoria - control more difficult

Source: J.I. Burke

2. Construction period defining the "sink" and building reserves

- > half total growth.
- > an extra 160,000 km/ha
 - of root growth.
- Rapid canopy expansion.
- More green leaf area for photosynthesis.
- Formation of the grain producing organs.

Green leaf area over time

Source:HGCA

Lessons from other farmers

- Francis Childs (1939 -2008)
- 3 time world record maize grain yield.
- 2002: 27.7 t/ha (11.2 t/ac)

"The Foundation for producing BIG <u>yield</u> is **building a healthy soil environment**. It all starts with the root zone get *healthy roots* and *healthy plants*, and *the <u>yield</u> will be high"*

Building Stem reserves

- Stem reserves and yield potential.
 - Bidinger *et al.* (<u>1977</u>) stem reserves: <u>10%</u> above ground D.M.
 - Shearman *et al.* (2005) stem reserves: 20-27% of above ground D.M.

• Influence of reserves on yield:

- Yield Component effect: no. kernels set/ear.
- Assimilate remobilizes to help fill grain.
- Good crop husbandry and early establishment aids building reserves.

Kernels/ear

Influenced by:

- Assimilate availability
- Shading
- Variety differences
- Weather conditions:
- Cool and bright before flowering ++
- Heavy rain, heat or drought at flowering --

3. Production "filling the sink" Kernel weight

Source of grain filling assimilate?

- Ear and leaf photosynthesis after flowering (75% Jamieson et al. 1998).
- 2. Stem reserves.

High yields require long sustained grain fill.

U.K. winter wheat benchmark:

- 49 days from GS 61-87(Sylvester-Bradley *et al*. 1997)

Management factors affecting length of grain fill

- N fertiliser (Hocking and Stapper 2001).
- Fungicides (Gooding et al. 2000).
- Pesticides and irrigation (Panozzo and Eagles 1999).
- Sowing date and cultivar selection (Hocking and Stapper 2001).

2011: typically excellent grain yields Why?

What have we learned?

- Harvest the sun with maximum efficiency.
- This is the aim of all our crop husbandry.
- Need:
 - Prompt canopy closure to capture the sun.
 - Optimize the yield components for large "sink".
 - Good stem reserves
 - Long grain fill period.

Temperature, sunlight and dry matter production

Temperature trend in 2011

Facilitated rapid canopy expansion & long grain fill

Solar radiation trend in 2011?

Above average or average throughout the growing season

Lessons from 2011

- Weather favored good yields. BUT remember
- "A rising tide lifts all (most) boats."
- YOU are the key to sustained high yields.
 - Timeliness of operations.
 - Husbandry decisions.
- Manage your crop to "harvest the sun":
 - Start early: Optimise each yield component.
 - Prompt canopy coverage in spring.
 - Build stem reserves.
 - Facilitate canopy retention to maximize photosynthesis during grain fill.

Comments Share your observations